Several Insertion Reactions of $Fe(C_5H_5)(dpe)H$ and $Fe(C_5H_5)(dpe)CH_3$ with Acetylenes, CS_2 and SO_2

P. M. TREICHEL and D. C. MOLZAHN

Department of Chemistry, University of Wisconsin, Madison, Wis. 53706, U.S.A. Received February 24, 1979

The compound $Fe(C_5H_5)/(dpe)H$ adds to the acetylenes $RC \equiv CR$ ($R = CF_3$, COOMe) to give the products $Fe(C_5H_5)/(dpe)CR = CHR$. For $R = CF_3$, cis addition is established by ¹⁹F nmr. Addition of the iron hydride complex to CS_2 gives a new S-bonded thioformate complex $Fe(C_5H_5)/(dpe)S_2CH$. The compound $Fe(C_5H_5)/(dpe)CH_3$ adds SO_2 to give $Fe(C_5H_5)/(dpe)SO_2CH_3$, a S-bonded sulfinate complex.

Introduction

Reported here are initial results on the addition of the Fe-H bond in $Fe(C_5H_5)(dpe)H$ to acetylenes and to CS_2 , and the insertion of SO_2 into the Fe-C bond in $Fe(C_5H_5)(dpe)CH_3$.

Experimental

The organometallic starting materials, $Fe(C_5-H_5)(dpe)H$ and $Fe(C_5H_5)(dpe)CH_3$ were prepared from $[Fe(C_5H_5)(dpe)(CH_3CN)]$ Br by the published procedures [1]. Tetrahydrofuran was distilled from LiAlH₄ before use. All reactions were carried out under nitrogen.

Infrared spectra (KBr pellet) were recorded on Beckman IR-10 and Digilab FTS-20 spectrometers. Proton nmr spectra were recorded on a Brucker WH-270 spectrometer operating in the Fourier Transform mode, with TMS, $\delta = 0$, as an internal standard; ¹⁹F nmr spectra were recorded on a Varian XL-100 spectrometer operating in the Fourier Transform mode with hexafluorobenzene as internal standard. Molecular weight determinations were made using a Mechrolab Osmometer, Model 301A. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tennessee.

Reaction of $Fe(C_5H_5)(dpe)H$ and $CH_3OCOC \equiv COOCH_3$

To a solution of $Fe(C_5H_5)(dpe)H$ (0.55 g, 1.06 mmol) in tetrahydrofuran (50 ml) was added

dimethyl acetylenedicarboxylate (0.23 g, ~ 1.6 mmol). The solution was stirred for 2 hr at room temperature. The tetrahydrofuran was removed and the residue was extracted with dichloromethane/ toluene (1:1) and chromatographed on neutral alumina. A large orange band was collected, and the solvent was removed at reduced pressure. The product was crystallized from chloroform and hexane as air stable, dark red crystals (0.35 g, 50%). The compound appeared to decompose between 180° and 190 °C, and the decomposition product melted at 200-201.5 °C. Anal: Calcd. for C₃₇H₃₆FeO₄P₂: C, 67.08; H, 5.48, P, 9.35; mol. wt. 662. Found: C, 66.69; H, 5.48; P, 9.24; mol. wt. 646. *IR*: $\nu_{C=O}$ 1693s $\nu_{C=C}$ 1514 ms. ¹H nmr (C_6D_6'): 6.8–7.8 δ (m, C_6H_5), 4.76 δ (s, H), 4.23 δ (s, C_5H_5), 3.61 δ (s, OCH₃), 2.63 δ and 2.19 δ (m, PCH₂CH₂P).

Reaction of $Fe(C_5H_5)(dpe)H$ and $CF_3C \equiv CCF_3$

Excess hexafluoro-2-butyne (1.0 g, 6.0 mmol) was bubbled into a solution of Fe(C₅H₅)(dpe)H (0. 48 g, 0.92 mmol) in pentane. The reaction mixture was stirred for 1.5 h at room temperature. The product slowly precipitated out of solution as a red-brown powder. It was collected by filtration. The crude product was recrystallized from diethyl ether and hexane, giving air stable, red-purple crystals (0.3 g, 48%); mp, 174-177 °C. Anal: Calcd. For C₃₅H₃₀-F₆FeP₂: C, 61.60; H, 4.43; P, 9.08; mol. wt. 682. Found: C, 61.77; H, 4.59, P, 9.19; mol. wt. 659. IR: KBr $\nu_{C=C}$ 1545w cm⁻¹. ¹H nmr (C₆D₆): 6.8-7.6 δ (m, C₆H₅), 4.84 δ (q, J_{H-F} \simeq 10.3 Hz, H), 4.24 δ (s, C₅H₅), 1.85–2.4 δ (m, CH₂). ¹⁹F nmr $((CD_3)_2CO)$: 107.6 ppm (pseudo q, $J_{F,F} = 14$ Hz, CF₃ geminal to the iron, trans to H), 101.4 ppm (m, CF₃ geminal to H, trans to iron) (chemical shifts downfield from C_6F_6).

Reaction of Fe(C₅H₅)(dpe)H and CS₂

Carbon disulfide (10 ml, excess) was added to $Fe(C_5H_5)(dpe)H$ (0.25 g, 0.48 mmol). The hydride initially dissolved, but the yellow solution rapidly became red. After standing for two hr., well formed, air stable, red-brown crystals of the product had precipitated. These were collected by filtration (0.22)

g, 77%). The crystals were washed with hexane. The compound decomposes at 105 °C, and the decomposition product melts at 155 °C. Anal. Calcd. for $C_{32}H_{30}$ -FeP₂S₂: C, 64.43; H, 5.07; P, 10.38; S, 10.75; mol. wt. 597. Found: C, 63.24; H, 5.01; P, 10.25; S, 10.35; mol. wt. 645. *IR*: $\nu_{SC(S)H}$ 1240m, 985s, cm⁻¹. ¹*H* nmr (C₆D₆): 11.01 δ (s, -SC(S)*H*), 7-7.6 δ (m, C₆H₅), 4.17 δ (t, J_{P-H} = 1.1 Hz, C₅H₅), 1.32-2.0 δ (m, PCH₂CH₂P).

Reaction of $Fe(C_5H_5)(dpe)CH_3$ and SO_2

Sulfur dioxide was slowly bubbled through a solution of $Fe(C_5H_5)(dpe)CH_3$ (0.5 g, 0.9 mmol) in hexane (40 ml) and dichloromethane (5 ml) at -72 °C. After 10 min no color change had occurred, and so the dry ice bath was removed and the reaction mixture was allowed to slowly warm to room temperature. A rapid color change from orange to black occurred at approximately -20 °C. The solvent was removed on a rotary evaporator. A crude yellow product was collected and washed with hexane. The yellow product was then chromatographed on a short, neutral alumina column $(1.5 \times 6.0 \text{ cm})$ with acetone/methanol (9:1) as eluent. The single yellow band was collected. The solvent was removed and the product was obtained from the residue as small orange crystals, and recrystallized from dichloromethane/diethyl ether (0.2 g, 35%) decomposes 158-159 °C. Anal: Calcd. for C₃₂H₃₂FeO₂P₂S. C, 64.22, H, 5.39; P, 10.35, mol. wt. 698. Found: C, 63.95; H, 5.48; P, 9.51; mol. wt. 600. IR: KBr v_{SO} 1142m, 1020s cm⁻¹. $\nu_{\text{S-CH}_3}$ 930 w cm⁻¹. ¹*H* nmr: C₆D₆ 6.7–8.1 δ (m, C₆*H*₅), 4.31 δ (t, J_{P-H} unresolved, C_5H_5), 1.7–2.0 δ (m, PCH₂CH₂P), 2.17 δ (s, S(O)₂- CH_3).

Results and Discussion

The addition of the Fe–H unit in $Fe(C_5H_5)(dpe)H$ to the acetylenes $RC \equiv CR$ ($R = CF_3$, COOMe) is facile, giving a single product in moderate yield:

 $Fe(C_5H_5)(dpe)H + RC \equiv CR \rightarrow$

 $Fe(C_5H_5)(dpe)CR=CHR$

 $(R = CF_3, COOMe)$

Both compounds are air stable, red crystalline compounds.

In the case of the product obtained from $CF_3C \equiv CCF_3$ the stereochemistry of addition is *cis*. This was ascertained from the J_{F-F} coupling constant in this compound, 14 Hz. It is found that *cis* CF_3 groups have coupling constants near to this value [2, 3] while *trans* CF_3 groups have J_{F-F} values of about 2 Hz [4, 5]. The stereochemistry of the single isomer from MeOCOC \equiv CCOOMe could not be determined.

A related compound, cis-Fe(C₅H₅)(CO)₂C(CF₃)= CHCF₃, was obtained as a minor product from reac-

tions of several $Fe(C_5H_5)(CO)_2(allyl)$ compounds with $CF_3C \equiv CCF_3$ [3]. The trans isomer of this species has been made as a minor product in the reaction of $Fe(C_5H_5)(CO)_2SnMe_3$ with this acetylene [5]. Related reactions between CF₃C=CCF₃ and both $Ru(C_5H_5(L)C(CF_3) = C(CF_3)C(CF_3) = CHCF_3 (L = CO,$ have also been reported, with the products, trans- $Ru(C_5H_5)(CO)_2C(CF_3)=CHCF_3$ and $cis-Ru(C_5H_5)$ - $(PPh_3)_2C(CF_3)=CHCF_3$, respectively, being obtained. Interestingly, in each reaction a second product, a 1:2 adduct of metal complex and acetylene, was also obtained. These adduct had the formulas $Ru(C_5H_5(L)C(CF_3)=C(CF_3)C(CF_3) \stackrel{t}{=} CHCF_3 (L = CO,$ PPh₃). Failure to form a related product in the $Fe(C_5H_5)(dpe)H$ reaction is probably a consequence of the reluctance of the complex toward displacement of one end of the chelating dpe ligand.

Dissolution of $Fe(C_5H_5)(dpe)H$ in CS_2 gave a yellow solution which rapidly changed to red. The product, a 1:1 adduct of these reactants, precipitates from this solution as dark-red crystals. An infrared spectrum for this product showed two absorptions not observed for the parent complex at 1240 m and 985 s cm^{-1} . The absorptions may be assigned to $\nu(CS)$ and $\delta(C-H)$ vibrations for the structure Fe(C₅H₅)(dpe)S₂CH, having a sulfur bonded thioformate ligand. In accord with this structural assignment is the nmr spectra data which includes a singlet resonance, intensity = 1, of the S_2CH proton at 11.01 δ . It is noted that this type of product has several analogues in M(CO)₃(dpe)S₂-CH (M = Mn, Re) [6] and trans-Pt(PCy₃)₂(H)S₂CH [7], prepared in similar addition reactions of metalhydrides.

The low temperature (-20 °C) reaction of Fe(C₅-H₅)(dpe)CH₃ with SO₂ gave a single product Fe(C₅-H₅)(dpe)SO₂CH₃. This product was characterized as the S-sulfinate isomer by the presence of two infrared absorptions at 1142 and 1020 cm⁻¹. Similar reactions of Fe(C₅H₅)(CO)(L)R with SO₂ have been reported [8,9].

References

- 1 P. M. Treichel and D. C. Molzahn, Syn. React. Inorg. Metal-org. Chem., in press.
- 2 T. Blackmore, M. I. Bruce, and F. G. A. Stone, J. Chem. Soc. Dalton Trans., 106 (1974).
- 3 J. P. Williams and A. Wojcicki, *Inorg. Chem.*, 16, 3116 (1977).
- 4 J. L. Davidson, M. Green, F. G. A. Stone, and A. J. Welch, Chem. Commun., 286 (1975).
- 5 R. E. Bichler, M. R. Booth, and H. C. Clark, J. Organometal. Chem., 24, 145 (1970).
- 6 F. W. Einstein, E. Enwall, N. Flitcroft, and J. M. Leach, J. Inorg. Nucl. Chem., 34, 885 (1972).
- 7 A. Albinati, A. Musco, G. Carturan, and G. Strukul, Inorg. Chim. Acta, 18, 219 (1976).
- 8 P. Reich-Rohrwig and A. Wojcicki, *Inorg. Chem.*, 13, 2457 (1974).
- 9 S. E. Jacobson and A. Wojcicki, Inorg. Chim. Acta, 10, 229 (1974).